Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases
نویسندگان
چکیده
Molecular information theory was used to create sequence logos and promoter models for eight phages of the T7 group: T7, phiA1122, T3, phiYeO3-12, SP6, K1-5, gh-1 and K11. When these models were used to scan the corresponding genomes, a significant gap in the individual information distribution was observed between functional promoter sites and other sequences, suggesting that the models can be used to identify new T7-like promoters. When a combined 76-site model was used to scan the eight phages, 108 of the total 109 promoters were found, while none were found for other T7-like phages, phiKMV, P60, VpV262, SIO1, PaP3, Xp10, P-SSP7 and Ppu40, indicating that these phages do not belong to the T7 group. We propose that the T7-like transcription system, which consists of a phage-specific RNA polymerase and a set of conserved T7-like promoters, is a hallmark feature of the T7 group and can be used to classify T7-like phages. Phylogenetic trees of the T7-like promoter models and their corresponding RNA polymerases are similar, suggesting that the eight phages of the T7 group can be classified into five subgroups. However the SP6-like polymerases have apparently diverged from other polymerases more than their promoters have diverged from other promoters.
منابع مشابه
A combined in vitro / in vivo selection for polymerases with novel promoter specificities
BACKGROUND The DNA-dependent RNA polymerase from T7 bacteriophage (T7 RNAP) has been extensively characterized, and like other phage RNA polymerases it is highly specific for its promoter. A combined in vitro/in vivo selection method has been developed for the evolution of T7 RNA polymerases with altered promoter specificities. Large (10(3)-10(6)) polymerase libraries were made and cloned downs...
متن کاملComparative analysis of tandem T7-like promoter containing regions in enterobacterial genomes reveals a novel group of genetic islands
Based on molecular information theory, 10 T7-like promoter models were built for the T7 group of phages and used to scan their host genomes and closely related genomes. 38 genomes were scanned and 12 clusters of tandem promoters were identified in nine enteropathogens. Comparative analysis of these tandem promoter-bearing regions reveals that they are similar to each other, forming prophage-lik...
متن کاملCONSTRUCTION OF RECOMBINANT PLASMIDS FOR PERIPLASMIC EXPRESSION OF HUMAN GROWTH HORMONE IN ESCHERICHIA COLI UNDER T7 AND LAC PROMOTERS
In order to study the periplasmic expression of human growth hormone (hGH) in Escherichia coli, the related cDNA was inserted in two expression plasmids carrying pelB signal peptide, one with lac bacterial promoter and the other with a bacteriophage T7-based promoter. The recombinant plasmids were moved to TG1 and BL21 strains of E. coli, respectively. To induce the expression systems, IPTG and...
متن کاملArabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes.
The T7 bacteriophage RNA polymerase (RNAP) performs all steps of transcription, including promoter recognition, initiation, and elongation as a single-polypeptide enzyme. Arabidopsis thaliana possesses three nuclear-encoded T7 phage-type RNAPs that localize to mitochondria (RpoTm), plastids (RpoTp), or presumably both organelles (RpoTmp). Their specific functions are as yet unresolved. We have ...
متن کاملTwo groups of capsule-specific coliphages coding for RNA polymerases with new promoter specificities.
Four bacteriophages (A16, CK235, phi 1.2 and K31) which specifically attack different encapsulated strains of Escherichia coli have been shown to be related to bacteriophage T7 (which is unable to grow on encapsulated hosts). The conclusion that phages A16 and CK235 are related to T7 is based on similarities in the pattern of expression of intracellular phage proteins, early appearance, in infe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005